Review of Complex Numbers

C. 1 REPRESENTATION OF COMPLEX NUMBERS

The complex number z can be expressed in several ways.
Cartesian or rectangular form:

$$
\begin{equation*}
z=a+j b \tag{C.I}
\end{equation*}
$$

where $j=\sqrt{-1}$ and a and b are real numbers referred to the real part and the imaginary part of $z . a$ and b are often expressed as

$$
\begin{equation*}
a=\operatorname{Re}\{z\} \quad b=\operatorname{Im}\{z\} \tag{C.2}
\end{equation*}
$$

where "Re" denotes the "real part of" and "Im" denotes the "imaginary part of."
Polar form:

$$
\begin{equation*}
z=r e^{j \theta} \tag{C.3}
\end{equation*}
$$

where $r>0$ is the magnitude of z and θ is the angle or phase of z. These quantities are often written as

$$
\begin{equation*}
r=|z| \quad \theta=\angle z \tag{C.4}
\end{equation*}
$$

Figure C-1 is the graphical representation of z. Using Euler's formula,

$$
\begin{equation*}
e^{j \theta}=\cos \theta+j \sin \theta \tag{C.5}
\end{equation*}
$$

or from Fig. C-1 the relationships between the cartesian and polar representations of z are

$$
\begin{array}{ll}
a=r \cos \theta & b=r \sin \theta \\
r=\sqrt{a^{2}+b^{2}} & \theta=\tan ^{-1} \frac{b}{a} \tag{C.6b}
\end{array}
$$

Fig. C-1

C. 2 ADDITION, MULTIPLICATION, AND DIVISION

If $z_{1}=a_{1}+j b_{1}$ and $z_{2}=a_{2}+j b_{2}$, then

$$
\begin{gather*}
z_{1}+z_{2}=\left(a_{1}+a_{2}\right)+j\left(b_{1}+b_{2}\right) \tag{C.7}\\
z_{1} z_{2}=\left(a_{1} a_{2}-b_{1} b_{2}\right)+j\left(a_{1} b_{2}+b_{1} a_{2}\right) \tag{C.8}\\
\frac{z_{1}}{z_{2}}=\frac{a_{1}+j b_{1}}{a_{2}+j b_{2}}=\frac{\left(a_{1}+j b_{1}\right)\left(a_{2}-j b_{2}\right)}{\left(a_{2}+j b_{2}\right)\left(a_{2}-j b_{2}\right)} \\
=\frac{\left(a_{1} a_{2}+b_{1} b_{2}\right)+j\left(-a_{1} b_{2}+b_{1} a_{2}\right)}{a_{2}^{2}+b_{2}^{2}} \tag{C.9}
\end{gather*}
$$

If $z_{1}=r_{1} e^{j \theta_{1}}$ and $z_{2}=r_{2} e^{j \theta_{2}}$, then

$$
\begin{align*}
z_{1} z_{2} & =\left(r_{1} r_{2}\right) e^{j\left(\theta_{1}+\theta_{2}\right)} \tag{C.10}\\
\frac{z_{1}}{z_{2}} & =\left(\frac{r_{1}}{r_{2}}\right) e^{j\left(\theta_{1}-\theta_{2}\right)} \tag{C.11}
\end{align*}
$$

C. 3 THE COMPLEX CONJUGATE

The complex conjugate of z is denoted by z^{*} and is given by

$$
\begin{equation*}
z^{*}=a-j b=r e^{-j \theta} \tag{C.12}
\end{equation*}
$$

Useful relationships:

1. $z z^{*}=r^{2}$
2. $\frac{z}{z^{*}}=e^{j 2 \theta}$
3. $z+z^{*}=2 \operatorname{Re}\{z\}$
4. $z-z^{*}=j 2 \operatorname{Im}\{z\}$
5. $\left(z_{1}+z_{2}\right)^{*}=z_{1}^{*}+z_{2}^{*}$
6. $\left(z_{1} z_{2}\right)^{*}=z_{1}^{*} z_{2}^{*}$
7. $\left(\frac{z_{1}}{z_{2}}\right)^{*}=\frac{z_{1}^{*}}{z_{2}^{*}}$

C. 4 POWERS AND ROOTS OF COMPLEX NUMBERS

The nth power of the complex number $z=r e^{j \theta}$ is

$$
\begin{equation*}
z^{n}=r^{n} e^{j n \theta}=r^{n}(\cos n \theta+j \sin n \theta) \tag{C.13}
\end{equation*}
$$

from which we have DeMoivre's relation

$$
\begin{equation*}
(\cos \theta+j \sin \theta)^{n}=\cos n \theta+j \sin n \theta \tag{C.14}
\end{equation*}
$$

The nth root of a complex z is the number w such that

$$
\begin{equation*}
w^{n}=z=r e^{j \theta} \tag{C.15}
\end{equation*}
$$

Thus, to find the nth root of a complex number z we must solve

$$
\begin{equation*}
w^{n}-r e^{j \theta}=0 \tag{C.16}
\end{equation*}
$$

which is an equation of degree n and hence has n roots. These roots are given by

$$
\begin{equation*}
w_{k}=r^{1 / n} e^{j[\theta+2(k-1) \pi] / n} \quad k=1,2, \ldots, n \tag{C.17}
\end{equation*}
$$

